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The Foroe Distribution Exerted by Surface Waves on Piles

by
Je Ro Morison

Abstracts Experimental data for the force distribution on three model oylind-
rical piles for three wave oonditioﬁ are presented. These results are oompared
to the previously published theory. )+

Introductions The purpose of this report is to present oxperimnte.l data on
the force distribution exerted by surfuce waves on piles. ?f these data

the coefficients of drag and mass that appear in the equation ) for the foroe
wore obtained., The experimental results werc compared to the saloulated foroe
distribution. In order to simpli the presentation, the force (1bs) was
divided by the rojeoted area (£t2) of a segment of the pile to give a forve
intensity (1bs/ft2). The measurement of force was made on & one-inch ‘high seg-
ment of several model piles of various diameters. The results of these studies
are that the experimentally doter?ine? coefficient of mass shows good agresment
with the theoretical value of 2,0 and relativolzssood agreement with the
values in previously presented oxperimentc 2,3,4,5, The results also
show that the experimentally determined coeffioient of drag is in olativnlxs
good agreement with the value 1.6 as found in previous exporiments’ 1,2,3,4,%).
The measurements of the foroe intensity distribution showed good agreement with
the caloulated distribution using the previously mentioned values of the coeffici-
snts in the equation for the foroe.

Experimental Set-ups The experimsnts were conducted in the 1 ft by 3 ft by 60
£t wave channel in the Fluid Mechanios laboratory of the University of Californmias,
Berkeley. A summary of the pile sizes and wave conditions is given in Tables I
and II. The foroce intensity was obtained by measuring the total horizontal force
on & one-inoch segment of the pile and dividing by the projeoted area of this seg-
ment, This segment oould be placed over a range of elevations above the bottom
of the channel., The arparatus resembled a perdulum restrained at the top,
pivoted at approximately the middle, with the one-inch pile segmsnt fastened

at. the bottom (See Mgure 1). The displacement of the pile segment was convert-
ed to a foroe by means of a oonversion factor obtained by calibration. In order
to obtain a flow pattern similar to a continuous pile and to reduce the tare on
the pendulum rod, a oylindrical shroud representing a pile was placed between

the one-inch segment and the pivot (whioh was always above the wave surface).

By the use of a frame, a dummy pile section was held below the one-inoch segment
to represent the lower portion of a continuous pile. The tare of the system
without the segmert was a very small peroceantage of the foroce on the segment.

The natural frequenoy of the system was relatively near the frequenoy of the
uniform, periodic wave trains, This caused considerable, unavoidable trouble
which the one-inch segment was newur the surface of the waves; especially when
the waves were very steep and when the waves were in relatively shallow water.

“Yumbers in ( ) are refsrencs numbers.
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Foroe Bg%tion(l’e)s The total horisontel foree on the one-inoh segment of the
8 g

pile 1 ven by the expression
du D2
dr.-:-/ocnuznds-fpcu—;g—;—ds (1)

where

dP = total foroe on Sno segnent, d8, - (1bs)
/° 2 density oi water, (1lbs x aooz/ft"')
Cp = coeffioient of drag s
Cy = coeffiocient of mmss +rE Cosh

o —

u = horizontal partiole velooity (ft/sec) = S1op 274

m
271%g  Cosh :2Is_

O3 _ norizontal partiole scoeleration (ft/sec2) =

T 2 g, 2md S8
T

D = pile diameter (ft)

dS = segment of pile (ft)

H = wave height - (ft)

T = wave period - (seo)

L = wave length - (ft)

d = still-water depth (ft)

8 2 elevation of the seotion d8 above the bottom (ft)

© = angular position of partiole in its ordbit

measure oounterclockwise (degrees)

The first term of Equation (1) is the drag force and the seoond term is the
inertia foroe. The ococeffioient of mass, Cy, includes the virtual mass,

The foroe intensity is given by the expression
+8 2 PR
Dds e/

Substituting Bquation (1) into Equation (2), together with the oxpressions for
u and -%% the forse intensity beocmes

2 B .

p..:.,o——-— [:cnxzco-ZOocxx(-%E)sme] (3)

Ps

,2
where

I Cosh-r—-
8inn 274
L

The angular position, oorresponding to the wave orest, the still-water level,
the trough and the following still-weter level are 0°, 90°, 180°, and 270°,
respeotively. In order to obtain the position of the maximm foroe intensity
relative to the wave position, Bquation (3) is differentiated with respeot
to ¢, set equal to sero, and solved for O, The result, oalled the phase
angle of the maximum foree intensity, is measured from the orest position,
and is denoted by /3 (max).



Sin 2 (mx) » Tl (4)

2 HK Cp

The position of the minimum force intensity is obtained in the same manner
and is denoted by/.f (min).

/3 (min) = /5 (max) & 180° (5)

Fquations 4 and § dc not hold for dS above the trough elevation so that the
maximm and minimm foree intensity for these elevations ocan only be obtain-
ed from a plot of Equation 3 for the wvalugs of @ for whioch the surface eleva-
tion (8,) 1s greater than the elevation{®) of the segment (dS), The position
and magnitude of the maximum foroe intensity relative to the wave orest then
san be obtained from thia graph.

The notation P(0), P(80), eto. indicates that Bquation (3) has bsszn solved
for @ z 09 90° eto., respectively. The notation P(max) and P(min) indioates
that BEquation (3) has been solved for @ 5, (max) and /< (min), respectively.
Since the foroe intensity is also a funotion of the elevation, S, the great-
est P(max) would be obiained for the larger values of K; that is, for the
large values of S, which is when the orest impinges on the pile. Conversely,
the largest of the P(min) values oocurs when the trough of the wave aots on
the pile. However, this is only true if Cp and Cy are oonstants over the
length of the pile. In this study it was found that for all praoctiocal
purposes these coefficients were constants, However, if these two coeffioci=-
ents were not constant over the length of the pile, their variations with 8
and @ must be inocluded when obtaining the greatest P(max) and P(min),

Results and Discussions The results of the experimental study of foroce in-
tensity distribution for three different size piles for two wave conditions
are presented in Tablas I and II. Two values of the force intensity are
given in Table I. The first wvalue is for a solid one-inch pile segusnt and
the seocond value is for a hollow one-inch pilis asegmeni. These seotions were
used to show that the mass of the moving segment did not affeot the results.
The motion of the segment was small, being of the order of 1/32 of an inch
maximm. The effeoct of the two different masses was to change the natural
frequency of the system, and it was found that the hollow segment proved
more suitable for the range of wave frequenocies possible in the wave channel.
Hence, it was used for the remainder of the experiments. Resonant vibration
of the reocording system oocourred when meagurements were taken near the surf-
ace of the water ocausing poor results whioh are not presented.

At the top of each table there is a summary of the average wave condition
together with the maximm percentage deviation of any measurement from that
nverage value., All deviations in the wave conditions were less than 10%,
and about half of them were less than 5%. The deviation in the measuremsnt
of the foroe intensity was within 10X of the maximum measured force intensity
as shown in Table I, where the same results were obtained from two different
experimental set-ups,

L)
In Table I the wave in deep water was of moderate steepness (E/L = 0,039).
T™e inertis force was nradominant with the drag foree becoming more impor-
tant for the small pile, and near the wave surface. The inertia foreoe had
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e larger relative effect under the crest than under the ticugn. The maxinum
and minimum foroe intensities are approximately equal for this wave oondition
80 that the time history of the foroes ars nearly symmetriocal about the
maximm ordinate and zero absoissa (see also Figure 6).

In Table II the wave in deep water was very steep (H/L = 0,091)s This wave
was the same length as ths wave oondition of Table I, but the height was
greater. The data show the drag foroce to have been more predominant than
for the less steep wave (Table I). Otherwise the trends of the deta were
about the same,

Thus far, the data indicate that the drag foroe is predominant for small
piles, for steep waves, for shallow-water waves, for the segment of piling
near the surface, and for oondition whea the wave crest passes the pile.

In other words, the drag foroe is important in regions of high relative
velooity, i.e. turbulence. The inertia force is prsdominant for relatively
large piles, for waves of relatively small steepness, for desp-water waves,
for segments of the pile well below the wave 3surface and when the wave posi=-
tion was suoch that the pile was at the still-watar level, The inertia foroce
is important in regions of high aoceleration where large masses are involved.
It must be remembered that this report deals only with horizontal foroces.

Tke data presented in Tables I and II in the columns P(0), P(90), P(180),
P(270), together with the wave dimensions and pile geometry, were substituted
into Equation 3 from whioh the values of Cp end Cy were camputed. The aver-
age Cp and Cy obtained from this study are shown in Table III. Th?ﬂ'alue of
Op = 2,03 campares roughly to the previously reported value of 1.6 (26%
variation). The valug of Cy = 196 ocompares exiremely well with the theoret-(l)
ical value ot 2,0 (7,8) and roughly with the previcusly reported value of 1.6
(256% variation).

Flgures 2 through 5 which show the drag oomponent and the inertia camponent
of force intensity are presentsd in dimensiorless form in order to show the
distribution, relative magnitude, and relative devietion between measured

and computed foroe intensity. The ooefficients used in the camputed foroce:
intensity were Cp = 1.6 and Cy a 2,0s The foroe intensity was made dimension=-
iess by dividing by the greatest computed maximum foroe intensity possible
for a given plle and a given wave conditions, Figures 2 ard 4 are for waves
of relatively small steepness in deep water (Table I); and Flgures 3 and §
are for a very steep wave in deep water (Tatle II)e Mgures 2 azd 3 show

the drag oomponents P(0) and P(180) of the force iztsasity. The figures

show that the drag foroce is mors predominari for the smallest pile, in shallow
watar, ard for steep waves, The agrsement between the measuremeats and the
oaloulations is fair oonsidering that most of the measurements are less than
20% for the maximum amplitude, with a deviation c® generally less than 5% of
that maximum amplitude, Figures 3 and 4 show the inertia components P(20)
arnd P{270) of the foroe intensity. The inertia foroe is shown to be more
prodominant for the larger piles, for deep wator and for relatively low waves,
The agreement between measured and oalculated foroe intensity is generally
within 10€ of the maximum amplitude. Theoretically, the second order :sffoots
o2 the foros intenaity would show that the foroe intensity under the orest

is greater than the foreoe intensity under the trough, however this effeot was
not distinguishable in this studye The foroe intensity ocomputed by Equation
3, for the wave ocondition of Table I and Figures 2 ard 4, was plotted in
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Figure 6. This example shows ths forsc intensity at the wave surface, henoe
at the elewvation 8,, whioh varies with @, The curves fur the different pile
sizes show the shift of the phase angle, and henoe the relative importance
of the drag and inertia oamponents of the horizontal foree. The ourves also
show the difference between the force intensity at the orest (maximum Sg)
and at the trough (minimum S,)s Unfortunately no suitable measurements oould
be obtained at the wave surface,

Ccnolusionss The good agreement between the measurements and the caloulated
foroe intensity indicate the followings

(1) The walues of ths coefficients for the force equation of Cp = 1.6
and Cy = 2,0 were sultable for the caloulation of the foroe intensity in
this model studye.

(2) The drag oqmponent of the horizontal foroe exerted by surfaoce
waves on oylindrioal piles is predominant for small piles, for steep waves,
for shallow water, for segments of the pile near the surfaoce and for the
oondition when the wave orest passes the pile.

(3) The inertia oomponent of the horizontal force exerted by surface
waves on oylindrioal piles is predaminant for large piles, for waves of small
steepness, for deep water, for segments of the pile well below the wave surf-
ace and when the wave position is such that ths pile is at the still-water
lovel,
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Table III
Experimentally Determined Coeffioient of Mass
Average values, averages deviation and range

Cy = 196 2 0426  (1e16 = 2.83)

Experimentally Determined Coefficient of Drag
Average value, average deviation and range

Cp = 2,03 £ G.40 (0.98 - 3.50)
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